Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection
نویسندگان
چکیده
The oral administration of amphotericin B (AmB) has a major drawback of poor bioavailability. The aim of this study was to investigate the potential of glyceryl monoolein (GMO) cubosomes as lipid nanocarriers to improve the oral efficacy of AmB. Antifungal efficacy was determined in vivo in rats after oral administration, to investigate its therapeutic use. The human colon adenocarcinoma cell line (Caco-2) was used in vitro to evaluate transport across a model of the intestinal barrier. In vivo antifungal results showed that AmB, loaded in GMO cubosomes, could significantly enhance oral efficacy, compared against Fungizone, and that during a 2 day course of dosage 10 mg/kg the drug reached effective therapeutic concentrations in renal tissue for treating fungal infections. In the Caco-2 transport studies, GMO cubosomes resulted in a significantly larger amount of AmB being transported into Caco-2 cells, via both clathrin- and caveolae-mediated endocytosis, but not macropinocytosis. These results suggest that GMO cubosomes, as lipid nanovectors, could facilitate the oral delivery of AmB.
منابع مشابه
Fabrication of polymeric microneedle arrays containing Amphotericin-B for transdermal drug delivery
Background and Aim: Drug delivery through the microneedle array has been considered as an easy and non-invasive method in recent years. The purpose of this study was to design and construct an array of biodegradable polymeric microneedles containing Amphotericin-B to introduce this system and its use in the treatment of cutaneous lesions caused by Leishmania major parasite inoculation as a mode...
متن کاملAmphotericin B is the wonder of today’s pharmacology science: persisting usage over seventh decades
Abstract: Despite several topical and systemic antifungal drugs are used for the treatment of fungal infection, Amphotericin B (AmB) is still one of the most common first-line choices in systemic fungal infection for over seventh decades from discovery. Amphotericin B which is belonged to the polyene group has a wide spectrum in vitro and in vivo antifungal activity. Its mechanism of antifunga...
متن کاملPreparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملPreparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملOptimizing efficacy of amphotericin B through nanomodification
Fungal infections and leishmaniasis are an important cause of morbidity and mortality in immunocompromised patients. The macrolide polyene antibiotic amphotericin B (AmB) has long been recognized as a powerful fungicidal and leishmanicidal drug. A conventional intravenous dosage form of AmB, AmB- deoxycholate (Fungizone or D-AmB), is the most effective clinically available for treating fungal a...
متن کامل